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1. Introduction

In recent years, significant progress has been made in full QCD lattice simulations. There

are simulations with 2+1 flavors, with realistic quark masses, and in large volumes, though

frequently only two of the three conditions are met at once. These simulations are per-

formed with different kinds of fermion formulations, from the simplest unimproved Wil-

son fermions to highly improved nearly chiral fermions, with improved rooted staggered

fermions and even with the expensive but exactly chiral overlap fermions. All these cal-

culations, even those with inexact chiral symmetry, are still expensive and require large

computer resources. Improving the fermionic action such that simulations could be per-

formed on coarser lattices, or improving the performance of algorithms to better fit today’s

computer power is important for truly realistic simulations. It seems that a simple modifi-

cation, the use of smeared gauge fields in the fermionic action, can help improve both the

action and the computational performance as well.

Smeared links are a natural part of improved fermionic actions. In the perfect action

formulation the Dirac operator at the renormalization group fixed point is fitted by an

extended but ultra-local Dirac operator. This fit is not feasible unless the gauge links of

the Dirac operator are smeared [1]. The exactly chiral overlap operator [2] effectively also

contains smeared links, even if the kernel operator is based on thin links. This can be seen

when one considers the expanded form of the overlap formulation with the square root term

in d(−R0)/
√

d†(−R0)d(−R0). The order d3, d5, etc. terms all contribute to the nearest

neighbor fermion coupling of the overlap Dirac operator with extended gauge connections.
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The most frequently used staggered fermion formulation, the so called Asqtad action, also

uses fat links [3]. The smeared links discussed above are part of the definition of the Dirac

operator. The gauge action is independent and in most cases is not smeared.

The effect of smearing is two-fold. First, it averages out small scale vacuum fluc-

tuations, reducing the non-physical ultra-violet noise in the fermionic action, secondly it

removes extreme local fluctuations of the gauge fields, lattice dislocations. In the various

fermion discretizations, the effect of vacuum fluctuations and dislocations comes in differ-

ent disguises. Staggered fermions’ taste breaking is triggered by gauge field fluctuations

within the hypercube and smearing can effectively reduce this effect [3, 4]. For Wilson

fermions dislocations contribute to the spread of the near zero real modes of the Dirac op-

erator. Those modes make it impossible to simulate at small quark masses without going

to very fine lattice spacing, and/or large volumes [5]. Smearing removes the dislocations

and reduces the spread of the eigenmodes [6].

Chiral fermions can also benefit from smeared links. The cost of the overlap operator is

largely given by the density of low modes of the kernel operator from which it is constructed.

Smearing reduces the occurrence of these low modes and thereby can reduce the cost of

applying the operator by an order of magnitude [7, 8]. In simulations using domain wall

fermions, the low modes of the kernel operator are known to cause explicit breaking of chiral

symmetry, indicated by a non-vanishing residual mass. If there are fewer of those modes,

chiral symmetry is realized to a higher degree and one can use a smaller fifth dimension

without increasing the residual mass.

There is no unique criterion what constitutes a “good” smearing procedure besides

the explicit construction of the fixed point Dirac operator or the expanded form of overlap

fermions. Without such guiding principles, any smearing, as long as it consists of adding

irrelevant (local) operators to the action, is acceptable. The smeared links do not even have

to be SU(3) elements as is illustrated by the success of the Asqtad action. Any acceptable

procedure will lead to a valid action, but chosen properly, smearing will improve the scaling

of the continuum limit. If the modification of the gauge fields are too weak, the smearing

has no effect. On the other hand, a definition of the fat link which spreads over many sites

and heavily mixes the links can lead to an action which again has strong cut-off effects [9].

Thus, a good smearing is as local as possible while removing as much of the short scale

fluctuations as possible.

The first smearing was introduced by the APE collaboration [10] and different forms

of smearing have been used in quenched studies since then. Dynamical simulations with

smeared links became practical when the fully differentiable stout smearing was proposed

by Morningstar and Peardon [11]. Iterating either APE or stout links can wash out short

to intermediate scale physical properties of the action, leading to large scale violations in

quantities sensitive to those scales [9]. Hyper-cubic (HYP) blocking, introduced in ref. [4],

circumvents this problem by reducing the spread of consecutive smearing steps. In this

paper, we will discuss variants of the HYP blocking that are differentiable and suitable for

molecular dynamics simulations.

In the next section we first modify the APE construction by replacing the original

SU(3) projection by a normalization to U(3). These normalized n-APE links are differen-
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tiable and as effective in removing short scale vacuum fluctuations as the projected APE

smearing. Next we combine n-APE smearing with the HYP definition and show that n-

HYP links are as effective as 3 levels of stout smearing and are considerably better than

HYP links constructed from stout smearing. The differentiable n-HYP smearing can be

used in dynamical simulations and in section 3 we give details of how the fermionic force can

be evaluated with n-HYP smearing. This force term can be combined with any fermionic

action and in section 4 we illustrate the effectiveness of the smearing both with overlap

and Wilson clover fermions.

2. Definition of the smeared links

The APE smeared link [10] is the basis of most smearing methods. First the staple sum

Γn,µ =
∑

ν 6=µ Un,νUn+ν,µU †
n+µ,ν is added to the original link Un,µ as

Ωn,µ = (1 − α)Un,µ + α′ Γn,µ . (2.1)

Here α′ = α/m and m is the number of staples included in the staple sum. Next Ω, a

general N × N matrix, is projected back to SU(N) as

Vp = max
V ∈SU(3)

Re tr (V Ω†) . (2.2)

In the following we will refer to this construction as projected- or p-APE. Since no closed

form for the derivative of the p-APE links is known, they are difficult to use in molecular

dynamics (MD) simulations.

Not long ago Peardon and Morningstar suggested a differentiable smearing method [11].

Their construction uses the staple sum Γn,µ to define the differentiable SU(N) stout link

as

Vs = eρSU, (2.3)

S =
1

2
(ΓU † − UΓ†) − 1

2N
tr(ΓU † − UΓ†) . (2.4)

It is not obvious why the suggested form is a smearing at all beyond the perturbative

regime where ΓU † ≈ n I. There the stout links are indeed identical to projected APE

smeared links with ρ = α/6 [12]. Nevertheless stout smearing appears to work similarly to

APE well beyond the perturbative regime.

Here we consider a smeared link that is closer in spirit to the projected APE links but

it is differentiable and appropriate for MD simulations. From the N ×N general Ω matrix

of eq. (2.1) we form a U(N) unitary matrix as

Vn = Ω(Ω†Ω)−1/2 . (2.5)

Since Ω†Ω is Hermitian and positive definite, (Ω†Ω)−1/2 is well defined, unless det Ω = 0.

The smeared link Vn is unitary but not in SU(N), its determinant in general is not one.

The form in eq. (2.5) was first used in ref. [13] to define smeared operators, while in ref. [14]

Vn is divided by the cube-root of its determinant to define an SU(N) link.
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One should note that there is no requirement that the smeared link be an SU(N)

element, but in practice projecting the link back to SU(N) was found to be more effective

in removing short scale fluctuations. Here we will show that the U(N) element Vn link is

as effective as the projected smeared link. In the following we will refer to the Vn links

defined in eq. (2.5) as normalized- or n-APE smearing. Since at the 1-loop perturbative

level neither the projection nor the normalization of the link plays any role, the 1-loop

perturbative properties of all three smearing prescriptions are identical.

HYP smearing, as introduced in ref. [4], consists of three consecutive projected APE

type smearing steps but the staple sums at the higher level are constructed such that only

links within the hypercubes attached to the original link enter. The consecutive smearing

levels are constructed as

Vn,µ = ProjSU(3)

[
(1 − α1)Un,µ +

α1

6

∑

±ν 6=µ

Ṽn,ν;µṼn+ν̂,µ;ν Ṽ
†
n+µ̂,ν;µ

]
, (2.6)

Ṽn,µ;ν = ProjSU(3)

[
(1 − α2)Un,µ +

α2

4

∑

±ρ6=ν,µ

V n,ρ;ν µV n+ρ̂,µ;ρ νV
†
n+µ̂,ρ;ν µ

]
, (2.7)

V n,µ;ν ρ = ProjSU(3)

[
(1 − α3)Un,µ +

α3

2

∑

±η 6=ρ,ν,µ

Un,ηUn+η̂,µU †
n+µ̂,η

]
. (2.8)

The Un,µ are the thin links from site n in direction µ, the Vn,µ are the resulting HYP blocked

fat links. The intermediate fields Ṽ and V are constructed such that the contributions to V

are restricted to the attached hyper-cube. The indices after the semi-colon always indicate

the directions excluded from the sums. The three SU(3) projections make the HYP smeared

configurations very smooth while keeping the smearing within a hypercube ensures that

even short distance properties of the configurations are only minimally distorted. While the

main ingredient, the SU(3) projections, make the HYP links difficult to use in dynamical

simulations, any of the above discussed differentiable smearings can be combined with the

HYP construction. In the following we will refer to the original HYP links as p-HYP, to

the normalized smearing as n-HYP and the stout HYP construction as stout - or s-HYP.

Again, at the 1-loop perturbative level the three descriptions are identical [12].

2.1 Stout and n-APE smearing in SU(2)

The two smearing prescriptions are easiest to compare for the gauge group SU(2). The

relevant quantity for both is ΓU † which is a linear combination of SU(2) elements and can

be written as

ΓU † = ω0I + i ω̄σ̄, (2.9)

where ω0 and ω̄ = n̂ω are real. For SU(2) the traceless anti-Hermitian part of ΓU †, S in

eq. (2.4), is just iω̄σ̄ and we thus have

Vs = eiρω̄σ̄U = [cos(ρω) + i sin(ρω) n̂σ̄]U, (2.10)
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while the APE link (2.1), normalized according to eq. (2.5) is

Vn =
[1 + ξω0

N0
+ i

ξω

N0
n̂σ̄

]
U , (2.11)

N0 =
√

(1 + ξω0)2 + (ξω)2 , (2.12)

where ξ = α′/(1 − α). The stout link is independent of ω0, the trace of ΓU †, and thus

contains less information about the original fields than the n-APE link.

Eqs. (2.10) and (2.11) can nevertheless be approximately identical if ρω, ξω ≪ 1, and

ω0 can be replaced by its average value. According to eq. (2.9) ω0 is related to the trace of

the plaquettes around the thin link U , so 〈ω0〉 = m tr(Uplaq)/N = m + O(ω2) when ω ≪ 1.

These conditions are satisfied near the continuum limit where fluctuations are suppressed

and the gauge links are close to the unit matrix. Then stout and n-APE links agree if

ξω/N0 ≈ sin(ρω), or

ρ =
ξ

1 + ξ〈ω0〉
=

α/m

1 − α(1 − tr(Uplaq)/N)
. (2.13)

This relation agrees with the perturbatively expected form ρ = α/m if tr(Uplaq) = N .

On typical MC configurations the plaquette is considerably smaller than that, suggesting

that even if stout and n-APE smearing can be matched on MC configurations, the corre-

sponding stout parameter could be significantly different from the perturbatively expected

value. While the optimal parameter for APE smearing is largely independent of the gauge

coupling, this is not so for stout smearing. On rough configurations where ρω is not small

and ω0 cannot be replaced by its average, stout links could be very different from n- or

p-APE links and resemble little the form of eq. (2.1).

2.2 Comparing projected, normalized and stout smearings

Smearing reduces lattice artifacts by removing some of the non-physical ultraviolet fluctu-

ations of the gauge configurations. The effectiveness of the smearing can be measured by

the smoothness of the plaquette, i.e. by the value of the average plaquette, and even more

so by the distribution of the smallest plaquette on finite volume configurations.

The comparisons presented in this section are based on a set of 500 quenched 84 lattices

generated with the plaquette gauge action at β = 5.8, corresponding to a lattice spacing

of 0.136 fm. In figure 1 we show the average plaquette after one level of p-APE, n-APE

and stout smearing as a function of the smearing parameter α. The values measured after

projected and normalized APE smearing are nearly indistinguishable, predicting the best

smearing at about α = 0.75. Above this value the smearing becomes unstable, the average

plaquette drops even with only one level of smearing. The stout smeared plaquette is

plotted in two different ways: once with the perturbatively predicted relation α = 6ρ,

and also with the relation based on the SU(2) prediction of eq. (2.13). While the former

parametrization leads to a very different result than the APE smeared links, the latter one

is surprisingly consistent with those.1

1It is usually assumed that the stout parameter must be tuned more carefully than the APE parameter.
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Figure 1: The average plaquette on quenched β = 5.8 configurations as a function of the smearing

parameter α after various single level smearings.
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Figure 2: The histograms show the distribution of the smallest smeared plaquette. The left panel

compares projected (lines) and normalized (shaded) APE with α = 0.75 smearing parameter. The

right panel compares n-APE (shaded) with α = 0.75 and stout smearing with 6ρ = 1.1 (lines).

The most extreme fluctuations can be studied from the tail distribution of the pla-

quette. Figure 2 shows the histogram of the smallest plaquettes. The left panel compares

p-APE and n-APE smearings at the same α = 0.75 parameter value. It is surprising how

small the deviation is between the two smearings even here when individual plaquettes are

This assumption is from figure 5 of ref. [11] but one should note that in that figure stout plaquettes are

plotted against ρ = α/6 while n-APE smeared plaquettes are plotted as a function of α/6/(1 − α). That

way the plot covers the range (0, 3.0) for the stout links but only (0, 0.75) for the n-APE links.
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Smearing 〈trUp〉 〈trUmin
p 〉

1× stout 2.60 -0.78(1)

2× stout 2.84 -0.16(2)

3× stout 2.91 0.46(3)

s-HYP a) 2.80 -0.39(2)

s-HYP b) 2.64 0.00(5)

n-HYP 2.82 0.38(3)

Table 1: Comparison of the plaquette and the minimum plaquette values. The different smearings

considered are: 1, 2 and 3 levels of stout smearing with 6ρ = 0.9; stout-HYP a) with parameters 6ρ =

(0.85, 0.75, 0.35) ; b) with parameters 6ρ = (1.2, 1.0, 0.4); n-HYP with standard HYP parameters

α = (0.75, 0.6, 0.3);

considered. If any difference is observable, it is to the advantage of the n-APE smearing

in the sense that the latter produces slightly larger minimal plaquette values. The right

panel compares α = 0.75 n-APE and stout smearing at the optimized value, 6ρ = 1.1. The

difference is obvious, n-APE removes more of the extreme fluctuations than stout smearing.

Stout smearing with 6ρ = 0.75 is considerably worse than n-APE smearing.

Next we consider HYP links based on the three different smearings. In ref. [4] the

projected-HYP parameters were optimized by maximizing the smallest plaquette on a set

of coarse (β = 5.7) configurations. The parameters found that way (α1 = 0.75, α2 = 0.6

and α3 = 0.3) turned out to be fairly independent of the gauge coupling and close to

the perturbative values that minimize taste violations for staggered fermions (α1 = 0.875

α2 = 0.571 and α3 = 0.25). Since we found that n- and p-APE smearing are nearly identical

numerically and they are identical perturbatively, we expect that the same parameter values

are optimal for n-HYP as well. We found it difficult to tune the stout-HYP parameters

using the procedure of ref. [4] since the sensitivity, especially to the last parameter ρ3,

is weak compared to statistical fluctuations. The best parameter values were large, even

larger than what one would predict based on eq. (2.13), and did not remove as many of

the small plaquettes as n-HYP smearing.

In table 1 we compare the average plaquette and the average of the minimum plaquette

values. In addition to n-HYP smearing with parameters α = (0.75, 0.6, 0.3) we consider 1,

2 and 3 levels of stout smearing with 6ρ = 0.9 smearing parameter, s-HYP smearing with

parameters 6ρ = (0.85, 0.75, 0.35) and with parameters 6ρ = (1.2, 1.0, 0.4). The former

s-HYP parameters correspond to n-HYP parameters rescaled according to eq. (2.13), the

latter one to the values found by optimizing the minimum plaquette distribution. The

average plaquette value does not always follow the minimum plaquette. Based on the

average plaquette one would expect that 2 levels of stout smearing are about the same or

better than n-HYP. This expectation is false as we will show in section 4 . The minimum

plaquette is a much better indicator of the quality of smearing. That observable puts n-

HYP close to 3 levels of stout and considerable better than s-HYP even with the optimized

b) parameter set.

To summarize our observations, we expect normalized-HYP to be as good as projected-
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HYP with the same parameter values. The n-HYP parameters do not have to be changed

with the gauge coupling and perturbative corrections are expected to be small. If stout-

HYP smearing is used in numerical simulations, the parameters will have to be tuned

depending on the gauge coupling. Stout-HYP smearing with parameters tuned that way is

effective in removing average fluctuations though it does not work as well in removing the

extreme fluctuations. At one-loop perturbation theory all three smearings are identical,

but since good stout parameters at large or moderate lattice spacing are well above the

perturbative values, one expects larger perturbative corrections for stout links. In dynam-

ical updates the computational overhead for n-HYP and stout-HYP is similar, therefore

overall n-HYP appears to be a better choice for simulations. In the following we describe

the implementation of n-HYP smearing in dynamical simulations.

3. Force of the NHYP link

The equations of motion which are approximately solved in the molecular dynamics evo-

lution derive from dH/dτ = 0, where H = p2/2 + Sf + Sg is the molecular dynamics

Hamiltonian. The computation of the fermion contribution to the derivative is subject

of this section. We denote the part of the fermionic action that depends on the smeared

links by Seff(V ) and assume its derivative Σµ with respect to the V links has already been

performed. We now describe how to use the chain rule to compute the derivative with

respect to the thin links. In our discussion we follow closely ref. [11]. We start out with

the derivative of Seff with respect to the simulation time parameter τ

d

dτ
Seff = Re tr

δSeff

δVµ

dVµ

dτ
≡ Re tr (Σn,µV̇n,µ) . (3.1)

Here V̇ = dV/dτ refers to the derivative with respect to the simulation time τ. Next we use

the definition of V in terms of the thin links U and the fat links Ṽ according to eq. (2.6),

with the projection replaced by the normalization as given in eq. (2.5), to get

Re tr (ΣµV̇µ) = Re tr
[
Σ(1)

µ U̇µ + Σ̃(1)
ν;µ

˙̃
V ν;µ

]
, (3.2)

Σ(1)
n,µ = Σn,µ

∂Vn,µ

∂Un,µ
, (3.3)

Σ̃(1)
n,ν;µ =

∑

m,ρ

Σm,ρ
∂Vm,ρ

∂Ṽn,ν;µ

, (3.4)

where the sum over m runs over all sites in the µ–ν plaquettes attached to the link (n, µ)

and ρ can be either µ or ν. Next we express Ṽµ;ν in terms of the thin links U and smeared

links V according to eq. (2.7), and continue this procedure until we reach the level where

only derivatives of the thin links are left

Re tr (ΣµV̇µ) = Re tr
[
(Σ(1)

µ + Σ(2)
µ )U̇µ + Σ

(2)
ρ;ν,µV̇ ρ;ν,µ

]
(3.5)

= Re tr
[
(Σ(1)

µ + Σ(2)
µ + Σ(3)

µ )U̇µ

]
(3.6)

– 8 –
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with

Σ(2)
µ = Σ̃(1)

ν;µ

∂Ṽν;µ

∂Uν
, (3.7)

Σ
(2)
n,ρ;ν,µ =

∑

m,α;β

Σ̃
(1)
α;β

∂Ṽm,α;β

∂V n,ρ;ν,µ

,

Σ(3)
n,µ =

∑

m,α,β,γ

Σ
(2)
m,α;β,γ

∂V m,α;β,γ

∂Un,µ
.

Here we can finally identify Σ
(1)
µ + Σ

(2)
µ + Σ

(3)
µ = δSeff/δUµ as the fermionic force term.

Since the additional levels to eq. (3.2) are very simple modifications of the first level —

only restricting the directions the sum runs over — let us restrict the following discussion

to the first level. In terms of Ω defined in eq. (2.1), the n-APE link is then given by

Vµ = Ωµ(Ω†
µΩµ)−1/2. To compute the inverse square root of Q = Ω+Ω, we employ a

method analogous to Morningstar and Peardon using the Cayley-Hamilton theorem. A

non-singular 3 × 3 matrix Q can always be written as

Q−1/2 = f0 I + f1Q + f2Q
2 , (3.8)

where the scalars f0, f1, and f2 are functions of the traces of Q, Q2 and Q3 only. It is

convenient to define

c0 = tr Q ; c1 = 1
2 tr Q2 ; c2 = 1

3 tr Q3 . (3.9)

The details of the functional dependence of the fi on the cj is discussed in section 3.1.

To use the strategy indicated in eq. (3.2), we apply the chain rule until we are only left

with derivatives of U or V , cycled to the right of the trace. For simplicity in the following

we drop the index µ.

Re tr ΣV̇ = Re tr
(
Σ

d

dτ
(ΩQ−1/2)

)

= Re tr(Q−1/2ΣΩ̇) + tr(ΣΩ)ḟ0 + tr(QΣΩ)ḟ1 + tr(Q2ΣΩ)ḟ2 (3.10)

+f1tr(ΣΩQ̇) + f2tr((ΣΩQ + QΣΩ)Q̇) .

Since the fi are scalar functions of the traces cn we get

ḟi =
∑

n

∂fi

∂cn
tr(QnQ̇) . (3.11)

The computation of the derivatives bij = ∂fi/∂cj is described in the next section. Defining

Bn = b0n + b1n Q + b2n Q2, eq. (3.10) leads to

Re tr(Q−1/2ΣΩ̇) + Re tr

{[∑

n

tr(BnΣΩ)Qn + f1ΣΩ + f2(ΣΩQ + QΣΩ)
]
Q̇

}
. (3.12)

Next, we define the sum in the square bracket as A and use that Q = Ω+Ω to get

Re tr
{

(Q−1/2Σ + AΩ+ + A+Ω+)Ω̇
}
≡ Re tr(ΓΩ̇) (3.13)

– 9 –
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with Γ = (A + A+)Ω+ + Q−1/2Σ. To compute the derivative of Ω, we apply the chain rule

again

Re tr(Σn,µV̇n,µ) = Re tr(Γn,µΩ̇n,µ)

= Re tr Γn,µ

[
(1 − α)U̇n,µ + α′

∑

ν

˙̃
V n,ν;µṼn+ν̂,µ;ν Ṽ

+
n+ν̂+µ̂,ν;µ

+Ṽn,ν;µ
˙̃
V n+ν̂,µ;ν Ṽ

+
x+ν̂+µ̂,ν;µ + Ṽn,ν;µṼn+ν̂,µ;ν

˙̃
V

+

n+ν̂+µ̂,ν;µ

]
.

Now we can write down the final expression for Σ(1) . First there is the “global” contribution

from the thin link

Σ(1)
n,µ = (1 − α)Γn,µ (3.14)

and then there is the term that is multiplied with the derivatives of the Ṽ ’s, which we have

to collect from the various contributions from neighboring sites

Σ̃(1)
n,ν;µ = α′

[
V n+µ,ν;µV

†
n+ν,µ;νΓn,ν;µ + V n+µ,ν;µΓn+ν,µ;νV

†
n,ν;µ + Γ†

n+µ,ν;µV
†
n+ν,µ;νV

†
n,ν;µ

+(ν → −ν)
]
.

The next term in the force expression, Σ
(2)
µ , is calculated the same way, by replacing Σµwith

Σ̃
(1)
µ;ν and Vµ with Ṽµ;ν , and similarly for Σ

(3)
µ .

3.1 Derivative of the f constants

This section describes the computation of the Cayley-Hamilton constants fi for the matrix

Q−1/2 and their derivatives with respect to the traces of Qn. The starting point is the

definition in eq. (3.8). Since the matrix Q = Ω†Ω is a positive, Hermitian matrix, it can be

diagonalized with non-negative eigenvalues gi. Eq. (3.8) then translates into an equation

relating the eigenvalues to the coefficients f .




1 g0 g2
0

1 g1 g2
1

1 g2 g2
2







f0

f1

f2


 =




g
−1/2
0

g
−1/2
1

g
−1/2
2


 (3.15)

This equation has to be solved for f . Naturally, all expressions are symmetric in the

eigenvalues g0, g1 and g2. It turns out to be convenient to express the solution in terms of

the symmetric polynomials of the square roots of the eigenvalues
√

gi

u =
√

g0 +
√

g1 +
√

g2 ; v =
√

g0g1 +
√

g0g2 +
√

g1g2 ; w =
√

g0g1g2 , (3.16)

such that we get for the coefficients f the following results

f0 =
−w(u2 + v) + uv2

w(uv − w)

f1 =
−w − u3 + 2uv

w(uv − w)
(3.17)

f2 =
u

w(uv − w)
.

– 10 –
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To compute the symmetric polynomials, we need a closed formula of the eigenvalues of Q

in terms of its traces (which are independent of the basis)

cn =
1

n + 1
tr Qn+1 =

1

n + 1

∑

i

gn+1
i .

This leads to a cubic equation whose solution is most easily expressed in terms of

S = c1/3 − c2
0/18 ; R = c2/2 − c0c1/3 + c3

0/27 ; θ = arccos

(
R

S3/2

)
(3.18)

with which the eigenvalues read for n = 0, 1, 2

gn =
c0

3
+ 2

√
S cos

(
θ

3
+ (n − 1)

2π

3

)
(3.19)

Finally for their use in eq. (3.12), we need to compute the derivatives of the fi with

respect to the traces cj . To this end, we use the chain rule and write

Bij =
∂fi

∂cj
=

∑

k

∂fi

∂gk

∂gk

∂cj
. (3.20)

The matrix ∂gk

∂cj
is the inverse of the Vandermonde matrix ∂ck

∂gj
= gk

j . Factoring out the

common denominator d = 2w3(uv − w)3 we get for the symmetric matrix B = C/d

C00 = −w3u6 + 3vw3u4 + 3v4wu4 − v6u3 − 4w4u3 − 12v3w2u3

+16v2w3u2 + 3v5wu2 − 8vw4u − 3v4w2u + w5 + v3w3

C01 = −w2u7 − v2wu6 + v4u5 + 6vw2u5 − 5w3u4 − v3wu4 − 2v5u3

−6v2w2u3 + 10vw3u2 + 6v4wu2 − 3w4u − 6v3w2u + 2v2w3

C02 = w2u5 + v2wu4 − v4u3 − 4vw2u3 + 4w3u2 + 3v3wu2 − 3v2w2u + vw3

C11 = −wu8 − v2u7 + 7vwu6 + 4v3u5 − 5w2u5 − 16v2wu4 − 4v4u3 + 16vw2u3

−3w3u2 + 12v3wu2 − 12v2w2u + 3vw3

C12 = wu6 + v2u5 − 5vwu4 − 2v3u3 + 4w2u3 + 6v2wu2 − 6vw2u + w3

C22 = −wu4 − v2u3 + 3vwu2 − 3w2u .

Note that this expression is singular only for w = 0, because uv − w > 0 as long as one

eigenvalue is non-zero. The pole in w =
√

g0g1g2 corresponds to at least one zero eigenvalue

of Q.

4. Numerical tests

The calculation of the fermionic force is considerably more involved with HYP links than

with stout links, but once the contribution from the smearing is implemented, it can simply

replace a stout smearing force routine. Since in ref. [7, 15 – 19] stout smearing was used

in dynamical overlap simulations, we have tested n-HYP smearing in the same set-up. We

– 11 –
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have also implemented smearing in dynamical Wilson clover simulations. In the following

we briefly summarize our experience with n-HYP links, concentrating mainly on algorithmic

issues.

A common algorithmic concern, independent of the fermionic formulation, is the po-

tential occurrence of links with almost zero determinant, detΩ ≃ 0. In such case the

normalized smeared link becomes ill-defined and the force term diverges. In our test runs

we found only once out of 1010 smeared link evaluations detΩ ≈ 10−8 and in single pre-

cision arithmetics that resulted in an exceptionally large force term. The corresponding

configuration was rejected and the simulation continued without problem. In double pre-

cision even this one occurrence could have been handled. The problem of detΩ ≈ 0 might

become much more severe at (even) coarser lattices but will disappear on the way to the

continuum.

4.1 Overlap tests

Smeared links are a common ingredient to chiral fermion simulations because the cost of

the Dirac operator application depends to a large part on the spectral properties of the

kernel operator it is constructed from. To be specific, let us concentrate on Neuberger’s

overlap operator

Dov = (R0 −
mov

2
) [1 + γ5ǫ(h(−R0))] + mov , (4.1)

with R0 the radius of the Ginsparg-Wilson circle, mov the bare quark mass, ǫ the matrix

sign function and h = γ5d the Hermitian Dirac kernel operator at negative mass shift −R0.

d is a Wilson like lattice Dirac operator, for our tests we take the planar operator discussed

in refs. [20, 7], which has scalar and vector couplings to nearest and diagonal neighbors.

Evaluating the action of the matrix sign function of h on a vector is the expensive

part of overlap fermion simulations. The standard technique is to compute the lowest

few eigenvalues of h explicitly and use the spectral representation of the sign function

for the corresponding sub-space. For the rest of the spectrum, a polynomial or rational

approximation is used. In our test we use the Zolotarev rational approximation. The

approximated sign function therefore reads

ǫ(h) ≈ h
∑

i

bi

h2 + ci
(1 −

∑

λ

Pλ) +
∑

λ

signλPλ (4.2)

with Pλ the projector on the eigenvector of h(−R0) with eigenvalue λ. For each application

of Dov on a vector a multi-shift system with the kernel operator has to be solved. Its

condition number (and therefore the cost) decreases if the region from which the modes

are treated explicitly is increased. Firstly, the lower bound of the Zolotarev approximation

can be increased which yields a larger minimal ci. Secondly the smallest eigenvalue of

h2 whose eigenvector has not been projected is larger. Thus the condition number of the

whole system is smaller and it takes less iterations to solve the system of linear equations.

A lower density of eigenvalues at the origin can therefore greatly reduce the cost of using

the overlap operator. This can be achieved by constructing the kernel operator h from

smeared links.

– 12 –
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n-HYP 2× stout 3× stout

#h×v 262(19) 604(38) 291(22)

〈|λ10|〉 0.31(1) 0.16(1) 0.28(1)

Table 2: The average number of applications of the kernel operator per application of the overlap

for different kinds of fat links. We also give the average of the absolute value of the tenth eigenvalue,

the largest eigenvalue for which we use the spectral representation.

To estimate how smearing in the kernel operator affects the cost of overlap simulations,

we compute one component of the overlap propagator at mass amov = 0.03 on 30 123 × 24

dynamical clover configurations described in section 4.2. On each configuration we project

out the eigenvectors of the 10 lowest eigenvalues of the kernel operator h(−R0). The

number of iterations of the solver in the application of the sign function is averaged over

the whole computation of the propagator. This gives the largest part of the cost of applying

the overlap operator in a realistic situation.

We compare kernel operators built from n-HYP links and stout links with two and

three levels of smearing. The stout smearing parameter is set to 6ρ = 0.9 which is the

value used in recent calculations using dynamical overlap fermions [18, 16], while for n-

HYP we use the standard HYP parameters. The results are displayed in table 2. The

largest projected mode is around 0.3 for both n-HYP and three levels of stout smearing

whereas it is roughly half that for 2 levels of stout smearing. Because the smallest shift

is much smaller than that, this also means that the condition number of the former is a

factor two smaller than for the latter.

This is also reflected in the cost of applying the overlap operator. Two levels of stout

smearing is about twice as expensive as either n-HYP or three iterated stout smearings.

However, the n-HYP smearing is more local than three levels of stout smearing and also

comes with smaller coefficients mixing the original links with the staple. These properties

ensure that the short to intermediate distance properties of the action are only minimally

distorted.

4.2 Wilson clover action tests

We have implemented n-HYP smearing with two flavor O(a) improved Wilson fermions.

For the gauge action we use the Lüscher-Weisz action and fix the tadpole coefficient u0 to

be 0.875, the value that corresponds approximately to our simulation values. Note that

this choice affects the gauge action only since the clover coefficient is left at its tree-level

value cSW = 1.0; preliminary simulations indicated that this is close to the value that

minimizes the width of the spectral gap of the Hermitian Dirac operator.2 At β = 7.2

the lattice spacing is around 0.13 fm and simulations in smaller volumes (lattice size of

83 × 12) predict, from the vanishing of the PCAC quark mass (see figure 3), a critical

hopping parameter of κc = 0.12787(14). This value is surprisingly close to the one found in

a quenched simulation with p-HYP smearing at similar lattice spacing [12]. The additive

2The tadpole improved value using the average n-HYP plaquette of 2.81 would be cSW = 1.05.
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Figure 3: The PCAC quark mass from simulations at β = 7.2 on 83×12 lattices. The additive

mass shift is only amadd = 0.090(4).

mass shift is dramatically smaller for HYP links than for thin link clover fermions, even

with non-perturbative cSW.

The remaining results quoted in this section are obtained from simulating a 123 × 24

lattice at β = 7.2 and κ = 0.1266. We have accumulated 500 trajectories after thermal-

ization and measured eigenvalues of D and γ5D, n-HYP smeared Wilson loops, as well as

pseudoscalar correlators every 5 trajectories.

The three most expensive parts of the update are the calculation of the fermionic

force (including inversions), the gauge force and the n-HYP blocking (including the n-

HYP force term). Of the total CPU time in these runs they consumed 75%, 13% and

11%, respectively. Thus, even with inexpensive fermion formulations such as Wilson the

computational overhead of the n-HYP blocking is negligible. One should also note that

the inversions of the Dirac operator are expected to be significantly cheaper than in a

comparable physical situation with thin link clover fermions if the latter is possible at all.

A few remarks on the details of our simulation are in place: Each trajectory was split

in 25 steps using a Sexton-Weingarten integrator and the same integrator on a finer time

scale was also used for the gauge force. This resulted in an acceptance rate of 0.879(7).

On 32 nodes of a Myrinet cluster with 2GHz Xeon processors, one unit length trajectory

took about 17 minutes to complete.

From fits to the static quark potential [21] we extract the Sommer scale [22] r0/a =

3.903(25) and the string tension a
√

σ = 0.2897(26). The bare current quark mass am =

0.0451(9) is in good agreement with the small volume data shown in figure 3, indicating

small cutoff effects. Assuming r0 = 0.5 fm we obtain a lattice spacing of 0.128(1) fm and

bare current quark mass of 69.4(1.5)MeV. We find a ratio of pseudoscalar to vector meson

mass of 0.57(3).

The behavior of the low-lying eigenmodes of the Dirac operator are of particular inter-

est if one wants to determine the degree of chiral symmetry that is retained at finite lattice
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Figure 4: The infrared spectrum of the n-HYP Wilson clover Dirac operator (left panel), and the

spectral gap as determined from the lowest eigenmode of the Hermitian γ5D Dirac operator on the

same configurations (right panel). The dashed line in both plots indicates the median of the spectral

gap distribution. Data are from 100 123 × 24 configurations with lattice spacing a ≈ 0.13 fm and

bare quark mass m ≈ 69 MeV.

spacing. Also, the lowest eigenvalue of the Hermitian Dirac operator γ5D is important for

algorithmic reasons as it determines the spectral gap and indicates the lowest bare quark

mass potentially accessible at a given lattice spacing and volume [5].

The left panel of figure 4 shows the infrared spectrum (lowest 40 eigenmodes) of the

n-HYP Dirac clover operator from 100 configurations. The complex spectrum has a rather

well defined left boundary that follows a circle with only a few real modes violating that

bound. This indicates that even at this coarse lattice spacing much smaller quark masses

can be reached without encountering exceptional configurations. A similar plot is published

in ref. [23] showing the eigenmodes of the chirally improved CI Dirac operator in two flavor

dynamical simulations at similar lattice spacing and volume, though about 50% lighter

quark masses. The spectrum in figure 4 compares well with that plot, showing similar

widening of the Ginsparg-Wilson circle for the two actions.

A more direct measure of the accessible mass range is the spectral gap, i.e. the distri-

bution of the smallest magnitude eigenvalue of the Hermitian Dirac operator γ5D [5, 24].

This distribution is plotted on the right panel of figure 4 with the median µ̄ = 63.3(4) MeV

marked by a dotted line. The ratio of the median and the PCAC quark mass is indicative

of the renormalization factor ZA/(ZmZP ) [5, 12] and the value we obtain, 0.91, signals

small perturbative corrections.

To facilitate comparison with similar distributions in ref. [5] the data is plotted with

the same bin size, ∆µ = 1.5MeV. The width of the distribution, defined as half the width
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of the shortest interval that contains 68.3% of the data, is σ = 5.5(6)MeV. Since the

distribution in figure 4 is quite asymmetric, it is more physical to define the width as the

interval to the left of the median that contains 68.3% of the data. This modified definition

gives σ = 4.6(6)MeV. One expects that simulations at quark masses of about 3σ are safe,

which corresponds to ≃ 15MeV at this volume and lattice spacing. In ref. [5] it was found

that, at least for unimproved thin link Wilson fermions [24], the width of the spectral gap

scales inversely with the square root of the volume, σ
√

V ≈ 1. Assuming the same scaling

law in our case we find σ
√

V ≈ 0.61 − 0.73, depending on the definition of the width. The

decrease signals the improved chiral properties of the smeared Dirac operator. The median

µ̄ of the lowest mode of the Hermitian operator is also indicated in the complex Dirac

spectrum, where it is tangent to the circle that bounds the spectrum.

5. Conclusions

We have successfully implemented and tested a gauge link smearing scheme that inherits

the good properties of HYP smearing (locality and removal of dislocations) while still

being suitable for MD based algorithms. This is achieved by replacing the projection steps

in the original HYP construction by normalizations to the corresponding unitary group,

thus allowing the calculation of the molecular dynamics force for fermions coupled to the

smeared links. We have tested the n-HYP smearing with overlap fermions where we found

that they can be simulated as effectively as 3 level stout smeared fermions and about

twice as fast as 2-level stout smeared ones. We have also implemented the smearing with

Wilson clover fermions. Our preliminary tests indicate that light quarks, even as low as

15 MeV, can be simulated at a ∼ 0.13 fm lattices and volumes aL & 1.6 fm. In addition,

the smoothness of the smeared links speed up the inversion of the Dirac operator.

We have reported only preliminary results here. The volume, quark mass, and lattice

spacing dependence of Wilson clover simulations with n-HYP links will be tested in the

future.
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